请选择 进入手机版 | 继续访问电脑版

EDABOSS电子论坛

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 520|回复: 1

[资料共享] 基于单片机的温度报警系统及温控风扇设计

[复制链接]

6

主题

0

回帖

36

E币

技术员

Rank: 2

积分
12
发表于 2019-1-11 10:26:02 | 显示全部楼层 |阅读模式
仿真原理图如下(proteus仿真工程文件可到本帖附件中下载)
1.PNG
目  录

第一章 绪 论

1.1 数字温度计的介绍

1.2 单片机的简介

1.3 单片机的应用领域

第二章 系统硬件组成

2.1 DS18B20温度传感器介绍

2.2 7段LED数码管电路及原理

2.3 系统方案的选择

2.4 系统整体硬件电路

第三章 系统程序的设计

3.1 主程序

3.2 读出温度子程序

3.3 温度转换命令子程序

3.4 计算温度子程序

3.5 显示数据刷新子程序

第四章 实验、调试及测试结果分析

4.1 硬件调试

4.2 软件调试

总 结

致 谢

参考文献

附录 程序代码






第一章 绪 论

1.1 数字温度计的介绍


温度是我们日常生产和生活中实时在接触到的物理量,但是它是看不到的,仅凭感觉只能感觉到大概的温度值,传统的指针式的温度计虽然能指示温度,但是精度低,使用不够方便,显示不够直观,数字温度计的出现可以让人们直观的了解自己想知道的温度到底是多少度。

数字温度计采用进口芯片组装精度高、高稳定性,误差≤0.5%, 内电源、微功耗、不锈钢外壳,防护坚固,美观精致。数字温度计采用进口高精度、低温漂、超低功耗集成电路和宽温型液晶显示器,内置高能量电池连续工作≥5年无需敷设供电电缆,是一种精度高、稳定性好、适用性极强的新型现场温度显示仪。是传统现场指针双金属温度计的理想替代产品,广泛应用于各类工矿企业,大专院校,科研院所。

数字温度计采用温度敏感元件也就是温度传感器(如铂电阻,热电偶,半导体,热敏电阻等),将温度的变化转换成电信号的变化,如电压和电流的变化,温度变化和电信号的变化有一定的关系,如线性关系,一定的曲线关系等,这个电信号可以使用模数转换的电路即AD转换电路将模拟信号转换为数字信号,数字信号再送给处理单元,如单片机或者PC机等,处理单元经过内部的软件计算将这个数字信号和温度联系起来,成为可以显示出来的温度数值,如25.0摄氏度,然后通过显示单元,如LED,LCD或者电脑屏幕等显示出来给人观察。这样就完成了数字温度计的基本测温功能。数字温度计根据使用的传感器的不同,AD转换电路,及处理单元的不同,它的精度,稳定性,测温范围等都有区别,这就要根据实际情况选择符合规格的数字温度计。





1.2 单片机的简介


单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。

单片机也被称为 微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备  和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。

  早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。

单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。

1.3 单片机的应用领域

  

目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械了。因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。

单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域,大致可分如下几个范畴:

1.在智能仪器仪表上的应用

单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。例如精密的测量设备(功率计,示波器,各种分析仪)。

2.在工业控制中的应用

用单片机可以构成形式多样的控制系统、数据采集系统。例如工厂流水线的智能化管理,电梯智能化控制、各种报警系统,与计算机联网构成二级控制系统等。

3.在家用电器中的应用

可以这样说,现在的家用电器基本上都采用了单片机控制,从电饭褒、洗衣机、电冰箱、空调机、彩电、其他音响视频器材、再到电子秤量设备,五花八门,无所不在。

4.在计算机网络和通信领域中的应用

  现代的单片机普遍具备通信接口,可以很方便地与计算机进行数据通信,为在计算机网络和通信设备间的应用提供了极好的物质条件,现在的通信设备基本上都实现了单片机智能控制,从手机,电话机、小型程控交换机、楼宇自动通信呼叫系统、列车无线通信、再到日常工作中随处可见的移动电话,集群移动通信,无线电对讲机等。

5.单片机在医用设备领域中的应用

  单片机在医用设备中的用途亦相当广泛,例如医用呼吸机,各种分析仪,监护仪,超声诊断设备及病床呼叫系统等等。

6.在各种大型电器中的模块化应用

  某些专用单片机设计用于实现特定功能,从而在各种电路中进行模块化应用,而不要求使用人员了解其内部结构。如音乐集成单片机,看似简单的功能,微缩在纯电子芯片中(有别于磁带机的原理),就需要复杂的类似于计算机的原理。如:音乐信号以数字的形式存于存储器中(类似于ROM),由微控制器读出,转化为模拟音乐电信号(类似于声卡)。

  在大型电路中,这种模块化应用极大地缩小了体积,简化了电路,降低了损坏、错误率,也方便于更换。

7.单片机在汽车设备领域中的应用

单片机在汽车电子中的应用非常广泛,例如汽车中的发动机控制器,基于CAN总线的汽车发动机智能电子控制器,GPS导航系统,abs防抱死系统,制动系统等等。

此外,单片机在工商,金融,科研、教育,国防航空航天等领域都有着十分广泛的用途。


第二章 系统硬件组成


2.1 DS18B20温度传感器介绍


1、DS18B20 简单介绍:

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。DS18B20的性能特点如下:

●独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

●DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温

●DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内

●适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电

●温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃

●零待机功耗

●可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温

●在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快

●用户可定义报警设置

●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件

●测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力

●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作


TO-92封装的DS18B20的引脚排列见下图2.1,其引脚功能描述见下:1.GND地信号

2.DQ

   数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源。

3.VDD

   可选择的VDD引脚。当工作于寄生电源时,此引脚必须接地。

102.003.jpg

图2.1 18B20管脚图

2、DS18B20 使用中的注意事项:

DS18B20 虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:

●DS18B20 从测温结束到将温度值转换成数字量需要一定的转换时间,这是必须保证的,不然会出现转换错误的现象,使温度输出总是显示85。

●在实际使用中发现,应使电源电压保持在5V 左右,若电源电压过低,会使所测得的温度精度降低。

●较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。

●在DS18B20的有关资料中均未提及单总线上所挂DS18B20 数量问题,容易使人误认为可以挂任意多个DS18B20,在实际应用中并非如此,当单总线上所挂DS18B20 超过8 个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。

●在DS18B20测温程序设计中,向DS18B20 发出温度转换命令后,程序总要等待DS18B20的返回信号,一旦某个DS18B20 接触不好或断线,当程序读该DS18B20 时,将没有返回信号,程序进入死循环,这一点在进行DS18B20硬件连接和软件设计时也要给予一定的重视。

3、DS18B20 内部结构:

图为DS1820的内部框图,它主要包括寄生电源、温度传感器、64位激光ROM单线接口、存放中间数据的高速暂存器(内含便笺式RAM),用于存储用户设定的温度上下限值的TH和TL触发器存储与控制逻辑、8位循环冗余校验码(CRC)发生器等七部分。

DS18B20采用3脚PR-35 封装或8脚SOIC封装,其内部结构框图如图 2.2所示

102.004.jpg
图 2.2 DS18B20内部结构框图

开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48 位,最后8位是前面56 位的CRC 检验码,这也是多个DS18B20 可以采用一线进行通信的原因。温度报警触发器TH和TL,可通过软件写入户报警上下限。主机操作ROM的命令有五种,如表所列

102.005.jpg
Byte0
温度测量值LSB(50H)
Byte1
温度测量值MSB(50H)
Byte2
TH高温寄存器
Byte3
TL低温寄存器
Byte4
配位寄存器
Byte5
预留(FFH)
Byte6
预留(OCH)
Byte7
预留(IOH)
Byte8
循环冗余码校验(CRC)

DS18B20 温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。高速暂存RAM 的结构为8字节的存储器,结构如图 2.3所示。               



便笺式储存器(上电状态)
E2PROM
TH高温寄存器
TL低温寄存器
配位寄存器

图 2.3高速暂存RAM结构图

前2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。

温度低位
温度高位
TH
TL
配置
保留
保留
保留
8位CRC

LSB                                                            MSB

当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0.062 5 ℃/LSB形式表示。温度值格式如下:

102.009.jpg

这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。图中,S表示位。对应的温度计算:当符号位S=0时,表示测得的温度植为正值,直接将二进制位转换为十进制;当S=1时,表示测得的温度植为负值,先将补码变换为原码,再计算十进制值。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。

DS18B20温度传感器主要用于对温度进行测量,数据可用16位符号扩展的二进制补码读数形式提供,并以0.0625℃/LSB形式表示。表2是部分温度值对应的二进制温度表示数据。

温度/℃
二进制表示
十六进制表示
+125
00000111
11010000
07D0H
+25.0625
00000001
10010001
0191H
+0.5
00000000
00001000
0008H
0
00000000
00000000
0000H
-0.5
11111111
11111000
FFF8H
-25.0625
11111110
01101111
FE6FH
-55
11111100
10010000
FC90H
表2 部分温度值

DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较,若T>TH或T[tr][td]

寄存器内容
表1 DS18B20暂存寄存器分布
该字节各位的定义如下:
102.011.jpg

低5位一直都是1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动,R1和R0决定温度转换的精度位数,即是来设置分辨率,如表1所示(DS18B20出厂时被设置为12位)。

R1
R0
分辨率
温度最大转换时/mm
0
0
9位
93.75
0
1
10位
187.75
1
0
11位
275.00
1
1
12位
750.00

表1 R1和R2模式表

由表1可见,设定的分辨率越高,所需要的温度数据转换时间就越长。因此,在实际应用中要在分辨率和转换时间权衡考虑。高速暂存存储器除了配置寄存器外,还有其他8个字节组成,其分配如下所示。其中温度信息(第1,2字节)、TH和TL值第3,4字节、第6~8字节未用,表现为全逻辑1;第9字节读出的是前面所有8个字节的CRC码,可用来保证通信正确。

     根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。

(2)、 测量数据比较

表2为采用直接读取测温结果方法和采用计算方法得到的测温数据比较,通过比较可以看出,计算方法在DS1820测温中不仅是可行的,也可以大大的提高DS1820的测温分辨率。

次数
T(直视)
M(剩余)
M(每度)
T(实际)
1
21.000
72
80
20.850
2
34.000
42
82
34.238
3
49.000
30
83
49.388
4
52.000
66
84
51.964
5
64.000
49
85
64.174
6
79.000
56
87
79.106
7
82.000
16
88
82.568

表2 DS18B20 直度测温结果与计算测温结果数据比较

2.2 7段LED数码管电路及原理

7段LED数码管分为共阳极与共阴极两种,共阳极就是把所有LED的阳极连接到共同接点com,而每个LED的阴极分别为a、b、c、d、e、f、g及dp(小数点);共阴极则是把所有LED的阴极连接到共同接点com,而每个LED的阳极分别为a、b、c、d、e、f、g及dp(小数点),如下图2.5所示。图中的8个LED分别与上面那个图中的A~DP各段相对应,通过控制各个LED的亮灭来显示数字。

102.012.jpg

图2.5数码管显示

4个数码管共用a~dp这8根数据线,为人们的使用提供了方便,因为里面有4个数码管,所以它有4个公共端,加上a~dp,共有12个引脚,下面便是一个共阴的四位数码管的内部结构图(共阳的与之相反)。引脚排列依然是从左下角的那个脚(1脚)开始,以逆时针方向依次为1~12脚,下图中的数字与之一一对应。

102.013.jpg
图2.6数码管管脚

2.3系统方案的选择

(一)、方案一

采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成(热电偶的构成如图 3.1),热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成。通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。数据采集部分则使用带有A/D 通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。热电偶的优点是工作温度范围非常宽,且体积小,但是它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺点,并且这种设计需要用到A/D 转换电路,感温电路比较麻烦。

102.014.jpg
图 3.1热电偶电路图

系统主要包括对A/D0809 的数据采集,自动手动工作方式检测,温度的显示等,这几项功能的信号通过输入输出电路经单片机处理。此外还有复位电路,晶振电路,启动电路等。故现场输入硬件有手动复位键、A/D 转换芯片,处理芯片为51 芯片,执行机构有4 位数码管、报警器等。系统框图如图 3.2所示:







102.015.jpg

图 3.2热电偶温差电路测温系统框图

(二)、方案二

采用数字温度芯片DS18B20 测量温度,输出信号全数字化。便于单片机处理及控制,省去传统的测温方法的很多外围电路。且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。在0—100 摄氏度时,最大线形偏差小于1 摄氏度。DS18B20 的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89S51构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。这样,测温系统的结构就比较简单,体积也不大。采用51 单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。既可以单独对多DS18B20

控制工作,还可以与PC 机通信上传数据,另外AT89S51 在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟。

该系统利用AT89S51芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度,并可以根据需要设定上下限报警温度。该系统扩展性非常强,它可以在设计中加入时钟芯片DS1302以获取时间数据,在数据处理同时显示时间,并可以利用AT24C16芯片作为存储器件,以此来对某些时间点的温度数据进行存储,利用键盘来进行调时和温度查询,获得的数据可以通过MAX232芯片与计算机的RS232接口进行串口通信,方便的采集和整理时间温度数据。

系统框图如图 3.3所示

102.016.jpg
图 3.3 DS18B20温度测温系统框图

从以上两种方案,容易看出方案一的测温装置可测温度范围宽、体积小,但是线性误差较大。方案二的测温装置电路简单、精确度较高、实现方便、软件设计也比较简单,故本次设计采用了方案二。


2.4 系统整体硬件电路

温度计电路设计原理图如图2.7所示,控制器使用单片机STC89C51,温度传感器使用DS18B20,用4位共阳LED数码管以动态扫描法实现温度显示电路。



102.017.jpg

图2.6数字温度计电路原理图




第三章 系统程序的设计

系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等


3.1 主程序

主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次被测温度,其程序流程见图3.1所示。

102.018.jpg
102.019.jpg

图3.1 主程序流程图                                            图3.2读温度流程图

3.2 读出温度子程序

    读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。其程序流程图如图3.2示


3.3 温度转换命令子程序

温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。温度转换命令子程序流程图如图3.3所示

102.020.jpg

图3.3 温度转换流程图

3.4 计算温度子程序

计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定,其程序流程图如图3.4所示。


3.5 显示数据刷新子程序

显示数据刷新子程序主要是对显示缓冲器中的显示数据进行刷新操作,当最高

显示位为0时将符号显示位移入下一位。程序流程图如图3.5。


102.021.jpg 102.022.jpg

图3.4 计算温度流程图                            图3.5 显示数据刷新流程图

第四章 实验、调试及测试结果分析

4.1 硬件调试

检查印制板及焊接的质量情况,在检查无误后可通电检查LED显示器。若亮度不理想,可以调整P0口的电阻大小,一般情况取200欧电阻即可


4.2 软件调试

在KeilC51编译下进行,源程序编译及仿真调试应分段或以子程序为单位逐个进行,最后结合硬件实时调试

通过以上检查后,将电路通电查看是否按要正常工作,实验最终结果显示实验成功下面分别为方真电路图、实物图。

102.023.jpg
102.024.jpg

总 结

本设计利用89C51 芯片控制温度传感器DS18B20,再辅之以部分外围电路实现对环境温度的测控,性能稳定,精度教高,而且扩展性能很强大。由于DS18B20 支持单总线协议,我们可以将多个DS18B20 可以并联到3 根或2 根线上,CPU 只需一根端口线就能与诸多DS18B20 通信,占用较少的微处理器的端口就可以实现多点测温监控系统。由于DS18B20的测量精度只有±0.5 度,往往很多场合需要更加精确的温度,在所测温度精度不变的基础上必须对数据进行校正。由于DS18B20 是基于带隙结构的数字式温度传感器,PN 结增量电压正比于IC 绝对温度(PTAT),它的测温精度较高,但存在着一定的误差.不过,其误差在时间和外部环境变化的条件下,保持相当高的稳定性。针对这一特性,基于线性插补的数学思想,利用DSP技术,对其进行误差校正补偿.这种误差校正的补偿方法,不需增加硬件电路,计算方法简单,软件费用也很小,既提高了测量精度,又不需增加成本。它充分利用监控计算机的处理能力,在监控计算机上用线性插补的数学方法对其进行误差校正补偿,能轻易地将其提高其精度。

   经过将近三周的单片机课程设计,终于完成了我的数字温度计的设计,虽然没有完全达到设计要求,但从心底里说,还是高兴的,毕竟这次设计把实物都做了出来,高兴之余不得不深思呀!

在本次设计的过程中,我发现很多的问题,虽然以前还做过这样的设计但这次设计真的让我长进了很多,单片机课程设计重点就在于软件算法的设计,需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,举个例子,以前写的那几次,数据加减时,我用的都是BCD码,这一次,我全部用的都是16进制的数直接加减,显示处理时在用除法去删分,感觉效果比较好,有好多的东西,只有我们去试着做了,才能真正的掌握,只学习理论有些东西是很难理解的,更谈不上掌握。

从这次的课程设计中,我真真正正的意识到,在以后的学习中,要理论联系实际,把我们所学的理论知识用到实际当中,学习单机片机更是如此,程序只有在经常的写与读的过程中才能提高,这就是我在这次课程设计中的最大收获。




102.010.jpg

配送资料.7z

5.68 MB, 下载次数: 3, 下载积分: E币 -5 元

积分规则
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|EDABOSS电子论坛

GMT+8, 2024-3-29 06:38 , Processed in 0.044652 second(s), 23 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表